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and ¢, = 1 for k¥ = 0, and 2 for ¥ > 0.
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Modellization of Losses in TEq;;-Mode
Waveguide Bandpass Filters

Andrea Melloni and G. Guido Gentili

Abstract—A mode-matching technique for the analysis of TEg1; mode
waveguide cylindrical bandpass filters including losses is presented. The
modes of a lossy radial waveguide are derived and the generalized
scattering matrix of the lossy cavity coupled by two rectangular apertures
is computed enforcing an impedance boundary condition on the cavity
sidewall. Cavity sidewall losses as well as top and bottom wall losses
are therefore taken accurately into account. Numerical and experimental
results are given for a four cavity filter in /i, band.

1. INTRODUCTION

Cylindrical cavities resonating in TEo11-mode are very attractive
for the realization of low-loss narrow-band filters. Fig. 1 shows the
structure of a filter section: cylindrical cavities are coupled together
and to the external waveguide by means of short rectangular coupling
irises operating below cutoff. The two apertures on the cavity sidewall
form an angle 29.

In [1], [2] the authors presented a mode-matching technique to
analyse accurately this kind of filters. That procedure allowed to take
accurately into account the effects of the thick coupling apertures, the
irises angular offset 29, the spurious responses and the higher mode
interaction between adjacent resonators, overcoming the limitations
of available approximate models [3]. [4]. After that, by optimization
procedures it is possible to design filters having the desired frequency
response without resorting to empirical adjustments.

In the present paper, it is explained how to modify this mode
matching technique to take into account also ohmic losses. Top.
bottom, and cavity sidewall are assumed to have finite conductivity
while coupling irises, which are very short and operate below the
cutoff, are assumed lossless. Moreover, since in the passband the
field configuration inside the cavity is very similar to the TEq11 mode
only, losses due to currents flowing 1n the a-direction. which are due
only to spurious modes, are neglected.

For sake of simplicity in this paper the analysis is limited to cavities
with two identical apertures symmetrically placed with respect to the
height of the cavity. The general case of cavities with two different
apertures can be derived with minor modifications of the algorithm.

Sections II and III reports the formal solution of the field problem
and Section IV some numerical and experimental results.

II. STATEMENT OF THE PROBLEM

The analysis of TEo11 bandpass filters is conveniently carried out
by splitting the whole structure in simpler building blocks, as shown
in Fig. 1. Two discontinuities must be analyzed: the symmetrical
double-step formed by the junction between the rectangular external
waveguide and the first (last) rectangular coupling iris and the discon-
tinuity at the junction between the irises and the cavity itself. Each
discontinuity is considered separately and its generalized scattering
matrix is computed. The overall scattering matrix of the total filter
is hence obtained by a suitable direct combination of all single
scattering matrices [5]. The analysis of the double-step discontinuity
in rectangular waveguide is a well known problem, efficiently solved
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Coupling Irises

TE1 (4]

Fig. 1. Schematic view of the TEq1; bandpass filter.

by several authors [6], [7] using a TE” field expansion and is
not treated in this context. The transverse field components in the
rectangular aperture are

Ey =jop ) (af +ay)éd(z,y) N
u=1
HY =Y (af —ag) (K = k3,)83(2,9) /7 @)

u=1

being v, = /kZ, + k2, — k? the propagation constant, k* = w”pe,
kep = 2p+ U)w/a and kyq = qr/b with p,¢ = 0,1, 2,... 0.
Finally af and ay are the incident and reflected modal coefficients
and ¢5(z,y) is the rectangular mode function

/2 b
o2z, y) = % €08 kzp €OS kyq (5 + y). 3)

€4 is the Neumann factor and v is some combination of p and g.

Also in the cavity only TE® modes (simply TE in the following)
are considered, because of the orientation of the external waveguide
(see Fig. 1). Although in practice TM modes can be weakly excited,
in general their effects are negligible [4]. Considering the cavity as
a radial waveguide of height h with lossy plates, the modal fields
components of interest are

° . = Jz/ KenT) o
E; ZJWZ_:ICU_(HT)QS%(%I) @
H? =) codi(hent)$ls (1) ®)
v=1
o s~ Ji(Kear) bue (@, 7)
Hr = ;CU Ken Ox (6)

where ¢, is the modal amplitude coefficient and ¢3. (i, ) is the
modal eigenfunction

o _ E—l . cos .
(bvsn =4 / o COS(h/zan')sm (up) (7)

solution of the homogeneous Helmholtz equation satisfying the
boundary condition

ES = Z,%xHS at z=+h/2, (8)

Condition (8) is rigorous only for TEg,-modes. For a good conduc-
tor the surface impedance is Z, = (1 + j)4/wpo /20 with o being
the conductivity of the wall metal. In (9)—~7) i, = 0,1,2---oc and
Ken = k2 — R2,,. The eigenvalue K., is calculated by means of
the boundary condition (8) and, by a limiting process, is found as

an = foon {1 —a- j)%] ©

where 6 is the skin depth and k., = (2n + 1)7/h is the eigenvalue
of the perfectly conducting case.

The termination of such a lossy waveguide with an impedance
surface with two aperture at a distance from the center of the cavity
equal to its radius R is now enforced by the mode matching technique
and the generalized scattering matrix of the resonator is obtained.
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III. THE SCATTERING MATRIX OF THE LOSSY CAVITY

By taking advantage of the symmetry, only half cavity, obtained by
inserting either an electric or a magnetic wall at the symmetry plane,
can be analyzed. The two generalized one port scattering matrices of
half the cavity are derivable by suitable projection of the E-field and
H-field continuity equations over the aperture.

If b is small compared with R, the derivation of the two equations
is straightforward and the continuity equations write

|

ES = E, _oon aperture Sa (10)
Z;H, on cavity sidewall Sw

H° = HY on aperture S4. (11)

Equation (10) is projected by using the cavity eigenfunctions
¢oe (¢, ) over the cavity sidewall Sy~ and on the aperture Sj.
The continuity equation of the magnetic field (11) is projected using
the eigenfunctions ¢S (x,y) of the rectangular coupling iris on the
aperture surface S4. This leads to the matrix equations

$C=H: (At +A" )+ ZW:Y°C 12)
HI Y°C=Y"(A" - A7)
where AT = [af], A™ = [a;] and C = [c,] are the incident,

reflected and the cavity modal amplitude vectors coefficients, He
and W are the coupling matrices and YE and Y*° are two diagonal
square matrices of normalizing coefficient. Superscript “T” denotes
transpose. The elements of the coupling matrices are defined as

He (v,u)= [ % (¢.2)85(x.y)ds, (13)
Sa
W o) = [ 6% (pre)il, ds (14)
Sw
kZ_kZ
Y (u,u) = =22 (15)
Yu
and
-0 Nanz(":cnR) K‘an
= = . 1
H R o ey M

Integration (13) can be carried out by replacing 7y, with £z, without
loosing in accuracy and integration (14) is avoided by observing that
[81
1 T
- —I - He He .
2 mom
By solving the two matrix (12) as usual, the two scattering one
port matrices I'e and I'y, are obtained

W, a7

r, = (Y"+ 2HT y°zH, ) (YO -2H[Y°ZH,) (8

where

Z=(1-22,W.Y°) ' ~I1+4+2Z,W,Y° (19)

and hence the scattering matrix of the symmetrical resonator is

I,.+T. Ir,.-T.
Tn+T. §py = ¢

Su = 5 5 (20)

IV. NUMERICAL AND EXPERIMENTAL RESULTS

This technique has been used to investigate the influence of the
finite conductivity of the cavity walls on the frequency behavior
near the resonance of the TEq;1 mode. Fig. 2 shows the computed
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Fig. 2. Computed insertion loss of a single cavity filter.

TABLE 1
THEORETICAL AND CALCULATED UNLOADED () 7
a Q Qs | Qs [10]
5.7 % 107 | 2040 | 25100 | 23649
2.5 x 107 | 2800 | 17590 | 15662

transmission coefficient through a single cavity filter with dimensions
h =205 mm, D= 34 mm, 29 = 180°, ¢ = 8 mm, b = 4 mm and
t = 3 mm, feeds with an R120 rectangular waveguide.

The frequency responses of the cavity with ¢ = 5.7 X 107 S/m
and ¢ = 2.5 x 107 S/m are shown. The former is the theoretical
conductivity of copper and the latter corresponds to a value measured
in the range 16 <+ 28 GHz [9]. The lossless filter response is reported
too showing a resonant frequency fo = 12.936 GHz and a loaded
() = 3330. The loaded @ has been calculated as (Q = 2fs/B. where
B is the 3 dB bandwith, and the unloaded @ y for a completely closed
lossy cylindrical cavity derived. Table I reports the loaded () of the
lossy cavity and a comparison between the unloaded @ s evaluated by
this technique and the theoretical Qs of the TE;; mode of the same
cylindrical cavity. The agreement is satisfactory considering also the
difficulties of an accurate evaluation of the bandwidth B.

A four cavities filter is now considered. The center frequency is
28 GHz and the bandwidth is 80 MHz. The filter has been designed
with the approximated methods available in literature [3], [4] and
then optimized resorting to the mode-matching technique. Cavities
dimensions in mm are D = 15.h1 = 9.997.hy = 9.954,29;, =
135° and 29, = 90° and coupling irises dimensions are ¢ = 4.6,b =
2.t1 = 2.539,t0 = 7.398 and £z = 8.628. R320 external waveguide
has been used to feeds the filter. A comparison between calculated
and measured insertion loss is reported in Fig. 3. A good agreement is
observed also on the insertion loss in the passband. In the simulation
the measured value ¢ = 2.5 x 107 $/m has been used.
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Fig. 3. Comparison between measured (—) and calculated (—e-—e—) in-
sertion and return loss of a four cavity filter.

V. CONCLUSION

This paper extend the mode matching technique used for the
analysis of cylindrical cavity TEo11 mode bandpass waveguide filters
to include the effects of finite conductivity of the resonators. Only
minor changes to the computer code of the lossless case are necessary.
Cavity sidewall losses as well as end walls losses are accurately taken
into account. Experimental results on a four cavity filter fully validate
this approach.
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